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Bulk and Shear Viscosities of 
a Polydisperse Hard-Sphere Fluid 
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The bulk and shear viscosity expressions for a multicomponent hard-sphere 
mixture in the Enskog transport theory are generalized to the polydisperse limit. 
The effect of polydispersity is expressed in terms of correction factors to the 
monodisperse fluid results. These correction factors have been evaluated for 
both a log-normal size distribution with the mass-size relation of a power-law 
form and a log-normal mass distribution with fixed particle size, which is the 
continuous limit of "isotopes." 

KEY W O R D S :  Bulk viscosity, shear viscosity; hard-sphere fluid; poly- 
disperse; Enskog transport theory. 

1. I N T R O D U C T I O N  

The transport properties (shear and bulk viscosities, thermal conductivity, 
mutual and thermal diffusion coefficients) of dense multicomponent hard- 
sphere fluid mixtures have been obtained by Cohen and co-workers ~1) in 
the revised Enskog theory (RET). The RET is an improvement of standard 
Enskog theory (SET) in that it takes as input the radial distribution 
function at contact between two colliding spheres (usually known as the 
contact value) evaluated as a functional of the local density field for a non- 
uniform system at equilibrium, while the SET requires as input the contact 
value of the radial distribution function for a uniform system evaluated as 
a function of the local density field at some particular point, typically the 
midpoint of the line joining the centers of the two colliding spheres. The 

t Department of Mechanical Engineering, State University of New York, Stony Brook, 
New York 11794-2300. 

2 Department of Chemistry, State University of New York, Stony Brook, New York 11794- 
3400. 

921 

0022-4715/89/1100-0921506.00/0 �9 1989 Plenum Publishing Corporation 



922 Xu and Stell 

RET leads to a description of mutual diffusion that is consistent with irre- 
versible thermodynamics, (2) while the SET does not. (3) The RET results of 
Cohen and co-workers have been recently extended by us (4) to the study of 
shear viscosity of polydisperse hard-sphere fluids. A polydisperse hard- 
sphere fluid is an infinite-species limit of the multicomponent hard-sphere 
mixture in that the size and mass of the particle satisfy some continuous 
distributions. In our previous study (4/ (hereafter refered to as I), explicit 
expression of shear viscosity was given for a distribution of particle size 
with the mass-size relation of a power-law form as the solution of a set of 
linear integral equations. For the special case of equal-mass particles, 
analytic solution to this set of linear integral equations was obtained. It 
was shown that a simple Gaussian quadrature method can be used to 
evaluate numerically the shear viscosity. Here we further extend our study 
to the bulk viscosity. We shall also study both the shear and bulk 
viscosities in a continuous analog of isotopic fluids, i.e., a polydisperse fluid 
with a continuous distribution of mass with the particle size constant. 

2. POLYDISPERSITY IN SIZE OF PARTICLES 

Expressions for the shear viscosity t/ and the bulk viscosity ~ are the 
same in the RET and SET for a v-component dense hard-sphere mixture/u 
In the Nth Enskog approximation (i.e., when N Sonine polynomials 
are included in the Sonine polynomial expansion that is used in the 
Chapman-Enskog method of solution; see ref. 5), ~ and x are given by ~1~ 

1 
q(N) = ~ kB T L x,H~b~o(N) 

i = l  

4 v v 

+_~n2(~kBT)i/2 ~ ~, (2Mom~)~/2 xexsao.Z~c4 (2.1) 
i = 1  j =  1 

5 T v 
K(N)=~kB 2 xi(Hi-1)hil(N) 

i = l  

4 v 
+~n2(2rk. T) 1/2 L E (2M~imJ)l/2xixjrT~ZiJ~ (2.2) 

i = 1  j = l  

where kB is Boltzmann's constant, T is the absolute temperature, xi is the 
mole fraction of the ith species, b~o(N ) and h~a(N) are the coefficients of 
Sonine polynomial expansions and are therefore different for different N 
used, andH~ (i = 1, 2 ..... v) are given by 

8~ L 3 Hi = 1 +-~ n xjMjsa~Z~ (2.3) 
j = l  
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Here n is the total particle number  density, )~0c is the contact  value, M U = 
m,/(mi + mj) with me the mass per particle of species i, and a 0 = (ai + aj)/2 
with ~r i the particle size (diameter) of species i. The Sonine coefficients are 
to be solved from the equat ions 

X O pq" beq(N) Z x B pq'~, + ~ j ~2 z~bjq(N = 5H~6po (2.4) j ij2 t~ijc 
q=0  j = l  j = l  

f o r p = 0 ,  1 ..... N - - 1  and i = l ,  2 , . . , v ; a n d  

Z heq(U) Pq' Pq" xjBooZijc + ~ xjBij o Zijchjq(N) = Ti6pl (2.5) 
q = l  j = l  j = l  

for p = 1, 2 ..... N -  1 and i = 1, 2 ..... v, with 

i xeha(N)=O (2.6) 
e = l  

The partial bracket  integrals BP. q' and B pq" were first given by Lindenfeld 
and Shizgal (6) and were included in the Appendix of I. Those relevant to 
re ( / =  0) have particularly simple forms. We thus include them in the 
Appendix. In Eqs. (2.4) and (2.5), 6,j is the Kronecker  delta. The Ti ( i =  1, 
2,..., v) are given by 

P (2.7) Te = 1 + ~ (H i - 1 ) - nkB-----T 

where P is the pressure and the equat ion of state is given by the virial 
theorem: 

v• 
P - 1 + ~ n  • xixja3l.~c (2.8) 

nk B T i=1  j = l  

For  the contact  value Zuc, we use the highly accurate Carnahan-Star l ing  
formula proposed by Mansoor i  et al., (7) 

Zijc = Z - 3  Z 2 - r  Z Z  2 + 2  Z2 2 
cr i + aj \ a  i + aj/ 

(2.9) 

where 

z =  ~_ ~ i ' 6 n x ja j ,  i =  1, 2, 3; Z =  1 - Z  3 (2.10) 
j = l  
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It is clear that Z3 is equal to the volume fraction of the fluid mixture. 
Before we take the polydisperse limit, we note that Eq. (2.5) is not a set of 
independent equations. This comes from the fact that Z~= ~xiT~ = 0. This 
explains why an additional equation (2.6) is required to uniquely determine 
ha(N). While the lowest-order Enskog approximation ( N =  1) is adequate 
for the shear viscosity t/ in the sense of yielding the full Enskog result to 
within a few percent, the second Enskog approximation ( N =  2) is required 
to obtain the same level of accuracy for the bulk viscosity ~r 

The limiting procedure of going from a multicomponent mixture to a 
polydisperse fluid has been described in I. We consider here a polydisperse 
hard-sphere fluid with a continuous distribution f (R)  of its particle size R, 
and a mass as a function of R, m = m(R). The moments o f f ( R )  are defined 
by 

f~= f (R)R idR ,  i=O, 1,.... (2.11) 

In particular, f0 = 1, f~ = R is the mean particle size, f2 = a2 + ~2, where 
~r2 =S~ f (R) (R- /~)2  dR defines the standard deviation from the mean 
aR. The polydispersity index s is given by s = aR/R. 

In the polydisperse limit, Eqs. (2.1) and (2.2) become 

with 

and 

= �89 TI. + 4n2(~kB T) ~/2 J. 

~c = ~kBTI ~ + 4n2(xkBT)~/2 J~ 

I, = f (R)  H(R) bo(R ) dR 

;? I,~ = f ( R ) E H ( R ) -  1] h,(R) dR 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

J, = J~ = ~ f (R)  f (R')  

x[2M(R,R ' )m(R ' ) ] I /Z(R+R' )4zc(R ,R ' )dR 'dR (2.16) 

Here M(R, R') = m(R)/[m(R) + m(R')],  and xc(R, R') is the contact value 
given by the approximate Carnahan-Starling formula(4): 

[- : 3RR' ( RR' ~2Z2 ] 
x c ( R , R ' ) = Z - ~ L Z  + ~ - ~ Z Z z + 2 \ R + R ,  j (2.17) 

3 
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with 

Z i =gnf,. ,  i = 0 ,  1, 2, 3; Z =  1 - Z  3 

Note that the volume fraction of a polydisperse fluid 

7~ 

r =-6 nf3 

is related to the reduced density 

by 

(2.18) 

(2.19) 

Here 

Kpq,(R, R') = f ( R ' )  Bpq,(R, R') zc(R, R') (2.26) 

;? gpqz(R) = f(R')  Bpq,(R, R') zc(R, R') dR' (2.27) 

r  ~ (2.21) 

Only in the monodisperse limit is ~b equal to n*. In Eqs. (2.14) and (2.15), 
H(R) is given by 

H ( R ) =  1 +--~n f(R')[1 -M(R ,  R')] 

x (R + R') 3 2G(R, R') dR' (2.22) 

and bo(R), ht(R ) are to be determined from 

Kpq2(R, R') bq(R') dR'+ g,q2(R) bq(R) = 5H(R) 6pO (2.23) 
q = 0  

for p = 0, 1,..., N -  l; and 

q = l  

for p = 1, 2 ..... N -  1, with 

f o f ( R )  hi(R) = (2.25) dR 0 

7"g --3 n* = -~ nR (2.20) 
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for I=  O, 2, and 

5 P (2.28) T(R) = 1 + ~  [ H ( R ) -  1] -nkB----T 

where the equation of state is given by the virial theorem as 

nkB T - 1 + ~ n f (R)  f (R')  

x (R + R') 3 )~c(R, R') dR' dR (2.29) 

We note that the set of linear integral equations (2.24) is not independent. 
Equation (2.25) must be included to obtain unique solution of hi(R). The 
T(R) satisfies the equation 

f o f ( R  T(R) dR = 0 (2.30) 

The partial bracket integrals B'pqt(R,R' ) and Bpq1(R,R' ) are the 
polydisperse generalizations of BP q' and BP~ " and were given in the 
Appendix of I. Those relevant to ~c ( /=  0) have particularly simple forms 
and are included in the Appendix. 

In the monodisperse limit, we expect to recover the well-known 
Enskog expression of to. For a monodisperse hard-sphere fluid with size/~, 
mass rh, and volume fraction r which now is qual to n*, we have simply 

f (R)  = 6(R - R) (2.31) 

This gives, from Eqs. (2.15), (2.16), and (2.25), that h i ( R ) = 0 ,  IN =0,  and 

Jx = th I/2R4Zc (2.32) 

where Zc =zc(R, R) is the contact value that, from Eq. (2.17), is given by 
the Carnahan-Starling formula 

1 - r  
~c - (1 _ r  (2.33) 

Hence we recovered the Enskog expression: 

- - ~  /~2 Z,. (2.34) 

The form of the approximation formula (2.17) for x~(R, R') leads to a 
couple of interesting analytic consequences. First, we note that if we sub- 
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stitute Eq. (2.17) into the equation of state (2.29), the integration can be 
easily performed to yield 

P =6Z-3[ZoZ2+3Z1ZRZ+3Z3-Z32Z3]  (2.35) 
kBT n 

(This equation of state for a polydisperse hard-sphere fluid was obtained 
earlier by Salacuse and Stell ~ from direct generalization of its finite-com- 
ponent mixture version.) Second, in the special case of equal-mass particles, 
the partial bracket integrals are functions of ( R + R ' )  2 only. Use of 
Eq. (2.17) makes the kernel Kpq~(R, R') degenerate. Therefore, the integral 
equations for the Sonine coefficients can be solved analytically, which leads 
to simple algebraic expressions for the transport coefficients. Detailed 
results have been given for r/ in I. For x the procedure is similar and just 
as straightforward. We note here that although this analyticity is the conse- 
quence of using the approximate Carnahan Starling formula (2.17), it 
becomes exact in the dilute-gas limit, where Eq. (2.17) becomes exact. 

For general mass-size relations, however, the integral equations for 
the Sonine coefficients in general have to be solved numerically. A 
mass-size relation of a power-law form appears in many physical situations 
and has been considered in I. It assumes that 

R d 
m(R) = m ~ (2.36) 

where th is the average mass per particle, defined by 

rh = m(R) f (R)  dR (2.37) 

The exponent d is essentially the fractal dimension of the system. The fa is 
the generalized dth moment given by Eq. (2.11) in which i is set to d. The 
equal-mass particle case simply corresponds to d= O. The size distribution 
we consider here is the log-normal distribution, (1~ a two-parameter 
function defined by 

1 ~ln(R/Ro) ]2 
f iR)  = fl(21z)l/2 R exp-- [_ /3 ~ 3 (2.38) 

where/3 > 0 is related to the polydispersity index by/3 = [ln(s2 + 1)] 1/2, and 
Ro is the particle size that maximizes the exponent and is related to /~  by 
/~ = Ro exp(fl2/2). The moments are 

f~ = R~ exp(i2/32/2), i =  0, 1, 2 .... (2.39) 
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Fig. 1. Log-normal size distribution for a number of values of the polydisperse index s. 

Figure 1 shows the log-normal distribution for a number of values of the 
polydispersity index s, with R set to unity without loss of generality. It is 
seen that for low polydispersity (s < 20 %), the log-normal distribution is 
very much like a Gaussian. As s increases, smaller particles become more 
probable. 

A simple numerical method we use is the Gauss-Hermite quadrature. 
For any function F(R), we have 

f ( R )  F(R) dR = 1 wiF(Ri) (2.40) 
i = l  

where L is the number of quadrature points, 

R i = _R exp(x, fl x /2  - fl2/2) (2.41) 

and w,  x~ are the weight factors and abscissas for the weight function 
e x p ( - x  2) in ( - 0 %  +c~),  respectively. Thus the integral equations 
(2.23)-(2.25) are made into linear algebraic equations for the Sonine coef- 
ficients evaluated at the quadrature points, solutions of which are then sub- 
stituted into expressions for the transport coefficients, again using the same 
quadrature method. It has been found  that convergence is fast. For the 
region of high r s, and d, use of 18 quadrature points in our study gives 
an accuracy within 1% for the bulk viscosity. For  the shear viscosity and 
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other regions of interest, the convergence is even faster. Our calculations 
are in the first Enskog approximation for t/ and in the second Enskog 
approximation for K. 

We can present our results as corrections to the monodisperse-fluid 
results. We define the correction factors as 

f~, - - -  (2.42) 
~(s = 0) 

where c~ = ~/ or x. The f~ thus defined is a function of ~, s, and d. Here 
c~(s = 0) is the monodisperse limiting result of c~ in a fluid with the same 
volume fraction ~, particle size/~, and mass rh. The quantity ~(s = 0) has 
been given by Eq. (2.34), while t/(s = 0) in the first Enskog approximation 
is given by 

r / (s=O)= 1-- l + ~ b Z ~  + 2 ~ b 2 Z ~  r/o (2.43) 
Z~ 

where r/0 =(5/16R2)(fflkBT/~) 1/2 is the dilute-gas limit of ~/(s=0). The 
monodisperse case ( s = 0 )  corresponds to f ,  = f ~  = 1 for all ~b and d. We 
wish to point out that f ,  thus defined differs from that in I in that the latter 
is the correction factor to the monodisperse dilute gas. The two become the 
same only in the dilute-gasIimit. 

Numerical results for f ,  and f~ vs. s are presented in Figs. 2 and 3, 

Fig. 2. 
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Fig. 3. Same as Fig. 2, but for f~. 

respectively, for a number of d and ~b values. It is seen that an increase of 
polydispersity reduces both the bulk and shear viscosities. This can be 
understood from Eq. (2.21) in the following way: as the system becomes 
more polydisperse, the total number density of particles decreases and 
smaller particles become more probable, which effectively slows down 
momentum transfer. The decrease of shear viscosity becomes faster, for a 
system with fixed fractal dimension, as the volume fraction is increased. 
The opposite trend is observed for the bulk viscosity, except that at low 
fractal dimensions and high polydispersities (s > 70 %), the same behavior 
as in the case of shear viscosity appears. As the volume fraction is lowered, 
the decrease of momentum transfer becomes faster for systems with higher 
fractal dimension. As volume fraction increases, the opposite trend is 
observed for shear viscosity in the low- and medium-polydispersity regions 
(s < 90%), and for bulk viscosity in the medium- and high-polydispersity 
regions (s between 55% and 150%). As can be seen from our figures, the 
effect of size polydispersity can bring both the shear and bulk viscosities 
down as much as 95 % for large s. 

3. POLYDISPERSITY IN M A S S  OF PARTICLES 

An interesting situation not covered so far is when all particles have 
the same size R but a continuous mass distribution f(m). This limiting case 
of "isotopes" is especially relevant to some problems associated with 



Viscosities of a Polydisperse Hard-Sphere Fluid 931 

polymers. The approach to the polydisperse results in tfiis case is similar to 
the corresponding derivation in terms of size distribution, but the resulting 
equations are much simpler. 

The q and K are again given by Eqs. (2.12) and (2.13), respectively, but 
now with 

and 

E I~ = f (m)  H(m) bo(m) dm 

I~ = f ( m ) [ H ( m ) -  1] h~(m) dm 

(3.1) 

(3.2) 

J, = J~ = R4Xc f (m)  f(m') 

x [2M(m, m')m'] m dm' dm (3.3) 

where M(m, m')= m/(m + m'), and Zc is given by Eq. (2.33), since now the 
volume fraction r is simply equal to n* = (rr/6) nR 3. The H(m) is given by 

16, 
H ( m ) = l + - ~ n  Zc f ( m ' ) [ 1 - M ( m , m ' ) ] d m '  (3.4) 

The Sonine coefficients bo(m) and h~(m) are to be determined from a set of 
linear integral equations identical in form to Eqs. (2.23)-(2.25) but with R 
replaced by m, and with 

Kpq,(rn, m') = zcf(m')  Bpq,(m, m') (3.5) 

S gpql(m) = Xc f(m') Bpq~(m, m') dm' (3.6) 

Expressions for the partial bracket integrals Bpql(m , m') and B~ql(m , m') 
are given in the Appendix. The equation of state in this case is simply given 
by 

P 
- 1 + 4n*xc (3.7) 

nk B T 

The mass distribution we consider here is again the log-normal dis- 
tribution defined by Eq. (2.38), but with R replaced by m. The numerical 
method we use to solve the integral equations is the same quadrature used 
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in the previous section, with R replaced by m in Eqs. (2.40) and (2.41). 
However, the convergence of the quadrature method in this case is much 
faster. Only a few quadrature points are needed to reach 1% accuracy. Our 
calculations are again in the first Enskog approximation for r/ and in the 
second Enskog approximation for ~. 

Our results are presented as correction factors defined by Eq. (2.42). 
The f ,  is a function of the volume fraction ~b and the polydispersity index 
s of the mass distribution. The f~, however, can be easily shown to be a 
function of s only. The density dependence of the bulk viscosity is accoun- 
ted for completely by its monodisperse expression (2.34). Results o f f ,  vs. 
s for a number of volume fractions and f~ vs. s are shown in Fig. 4. The 
monodisperse case (s = 0 )  corresponds to f ,  = f ~  = 1 for all ~b. It is seen 
that, as in the size distribution case, the effect of polydispersity is to reduce 
the momentum transfer, because as polydispersity increases, lighter par- 
ticles become more probable. The decrease of shear viscosity becomes faster 
as the volume fraction increases. 

4. D I S C U S S I O N  

We have presented in this paper an extension of our work in I to the 
bulk viscosity of a polydisperse hard-sphere fluid and to the bulk and shear 
viscosities in the interesting situation of a continuous mass distribution 
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with fixed particle size. Although our numerical results shown here are only 
for a log-normal distribution, any reasonable distribution (such as the 
Schulz or gamma distribution and the Gaussian distribution) gives similar 
behavior. For a Schulz distribution, we have found that in the low- 
polydispersity region (up to s =  26%), the difference between the shear 
viscosities using the log-normal and Schulz distributions is less than 0.4 %. 

The results of shear and bulk viscosities presented here diverge at 
volume fraction equal to one. This artifact results from using the 
approximate Carnahan-Starling formula (2.17) for the contact value, 
which is increasingly inaccurate at high volume fractions. The exact contact 
value can be expected to diverge at a close-packing density with a volume 
fraction less than one. Moreover, for a sufficiently low degree of polydisper- 
sity, one expects a transition m) into an ordered state at an even lower 
volume fraction, beyond which Eq. (2.17) is no longer accurate. If one 
instead follows the metastable disordered state above this volume fraction, 
one expects to approach a glass transition signaled by a striking increase 
in the shear viscosity/12) At present it is unclear whether one should also 
expect a striking increase in the metastable contact value as one 
approaches such a transition. If so, then the Enskog shear and bulk 
viscosities would also show a glass-transition anomaly that will not appear 
as long as Eq. (2.17) is used. In any case, because of the neglect of velocity 
correlations, the Enskog theory results presented here cannot be expected 
to be of high quantitative accuracy for volume fractions beyond about 
30%. 

A P P E N D I X .  P A R T I A L  B R A C K E T  I N T E G R A L S  FOR I = 0  

Those partial bracket integrals appearing in the bulk viscosity expres- 
sion have particularly simple forms. For a multicomponent hard-sphere 
mixture, we have 

,, 2 [ 2 k B T ' ~ U 2  ~ ~ - "  ~ . . . .  ( s + n + l ) !  
B P g ' = z a # ~ - - - ~  ) 2 2 2 4" 

n=o s=o ,~=o ( n + l ) t s !  

F ( p  + q - 2s -- 2n -- m -- 1/2) o(1t 
x (P _~-~_ s_-~.T ~ - q ~  ~ s_- ~ .  v m! u"~ 

x M ~MP. + q - -  2 m  - -  2 s - - n  - -  U2(Mo. _ M j i ) m  + 2 s  (A1) 

,, 2 [ 2kB T'~ 1/2 
M M;, 

F ( p  + q - 2n - 1/2) 
X 4" •(2) (A2) 

o=o 77- Y., - o o  
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where 

n 
B ( 1 )  _ _ 

nO ~ 2 
(A3) 

B ( 2 )  = � 8 9  - 6.o) nO (A4) 

and/~ = min(p, q). In the polydisperse limit, these become 

Bpqo(R, R')=- ~, 
[m(R)] 1/2 .=o m=0 

( s + n +  1)! 
4" 

(n + 1)! s! 

F(p + q - 2s - 2n - m - 1/2) R(1) 
x ( p - - m - - s - - n ) !  -(q-~m----s-----~.m! ~,o 

x [M(R,  R')]"  [1 - M ( R ,  R')] p+q 2 m  2 s  n 1/2 

• [2M(R, R ' ) -  1] m+2s (A5) 

( ~ _ ~ )  m (R + R')2 
B~qo(R, R ' ) =  [m(R)]l/2 [M(R, R')] q 

x I1 - M(R, R')]  p-  1/2 

x ~ 4" F(p + q -  2 n -  1/2) n(2) 
o = o  - n o  

(A6) 

In the second Enskog approximation ( N = 2 ) ,  we need partial bracket 
integrals for p = q = 1. From Eqs. (A5) and (A6), they are 

B'llo(R, R') = 2(27~kBT) 1/2 (R + R') 2 
[rn(R) ] 1/2 

x M(R,  R')[1 - M ( R ,  R')]  1/2 (A7) 

B[~o(R, R ' ) =  -Bi lo (R,  R') (A8) 

For equal-mass particles, M(R, R ' ) =  1/2. We thus have 

B'pqo(R , R ' )  = Apq o (R -F R ' )  2 (A9) 

B;qo(R , R ' )  = A;q o (R + R ' )  2 (A10) 
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! t /  where the c o n s t a n t s  Apq 0 and Apq 0 a r e  

A p q  0 = 

In particular, we have 
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• 4" #(1) (Al l )  
F(p  + q -  2 n -  1/2) 

,=o ( p - n ) !  ( q - n ) !  ~,o 

~ 4" #(2) (A12) 
F(p  + q -  2n - 1/2) 

.=o ( p - n ) !  ( q - n ) !  ~ . o  

Ailo = -A~'lo = x / ~  (A13) 

Finally, in the case of a mass distribution with fixed particle size R, the 
partial bracket integrals are given by 

Bpq,(m, m') = 2(2kB T)  1/2 - - -7  Aft!  
x/m n=0 ,=o 

1 l - t  ( r + s + n + t + l ) !  
x Z  Z 4 "  

t -o  ~-o (n + t + l )! r! s[ 

F ( p + q - 2 s - - 2 n - u + l - - r - t - - 1 / 2 )  RO) 
x (p~u_--s~_~v .  (-~-_u_-2--~-_--~.- ~ -  r---~v " u ! - . t  

x [M(m,  rn')] z+ . . . .  ' [ 1 - M ( m ,  rn')] p+q+' -2" -2  . . . .  1/2 

(A14) 

B(2) (A15) nt 

x [2M(m, m ' ) -  1] "+r+2s 

R 2 
Bpql(m , m') = 2(2k B T)  1/2 -~m Aft!  [ M(m,  m')  ] q+l/2 

x [1 - M(m,  m')]  p+ (z- t)/2 

t F (p  + q - 2n + l -  t - 1/2) 
x Z  Z 4 "  

n=o t=o ( p - n ) !  ( q - n ) !  ( l - t ) ?  

where At, ,,(1) and R (2) an, , --n~ have the same meanings as in 1. 
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